jc.parsers.csv
jc - JSON Convert csv
file parser
The csv
parser will attempt to automatically detect the delimiter
character. If the delimiter cannot be detected it will default to comma.
The first row of the file must be a header row.
Usage (cli):
$ cat file.csv | jc --csv
Usage (module):
import jc
result = jc.parse('csv', csv_output)
Schema:
CSV file converted to a Dictionary: https://docs.python.org/3/library/csv.html
[
{
"column_name1": string,
"column_name2": string
}
]
Examples:
$ cat homes.csv
"Sell", "List", "Living", "Rooms", "Beds", "Baths", "Age", "Acres"...
142, 160, 28, 10, 5, 3, 60, 0.28, 3167
175, 180, 18, 8, 4, 1, 12, 0.43, 4033
129, 132, 13, 6, 3, 1, 41, 0.33, 1471
...
$ cat homes.csv | jc --csv -p
[
{
"Sell": "142",
"List": "160",
"Living": "28",
"Rooms": "10",
"Beds": "5",
"Baths": "3",
"Age": "60",
"Acres": "0.28",
"Taxes": "3167"
},
{
"Sell": "175",
"List": "180",
"Living": "18",
"Rooms": "8",
"Beds": "4",
"Baths": "1",
"Age": "12",
"Acres": "0.43",
"Taxes": "4033"
},
{
"Sell": "129",
"List": "132",
"Living": "13",
"Rooms": "6",
"Beds": "3",
"Baths": "1",
"Age": "41",
"Acres": "0.33",
"Taxes": "1471"
},
...
]
parse
def parse(data: Union[str, bytes],
raw: bool = False,
quiet: bool = False) -> List[Dict[str, Any]]
Main text parsing function
Parameters:
data: (string) text data to parse
raw: (boolean) unprocessed output if True
quiet: (boolean) suppress warning messages if True
Returns:
List of Dictionaries. Raw or processed structured data.
Parser Information
Compatibility: linux, darwin, cygwin, win32, aix, freebsd
Source: jc/parsers/csv.py
Version 1.5 by Kelly Brazil (kellyjonbrazil@gmail.com)